Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.3 - Exponential Functions - Exercises 7.3 - Page 391: 98

Answer

$$\ln 4$$

Work Step by Step

$$\eqalign{ & \int_1^4 {\frac{{{{\log }_2}x}}{x}} dx \cr & {\text{using the property }}{\log _a}x = \frac{{\ln x}}{{\ln a}}{\text{ }}\left( {{\text{see example 7b}}} \right) \cr & \int {\frac{{{{\log }_2}x}}{x}} dx = \int {\frac{{\ln x}}{{x\ln 2}}} dx \cr & = \frac{1}{{\ln 2}}\int {\frac{{\ln x}}{x}} dx \cr & {\text{use substitution}}{\text{. Let }}u = \ln x,{\text{ then }}du = \frac{1}{x}dx \cr & {\text{write the integral in terms of }}u \cr & \frac{1}{{\ln 2}}\int {\frac{{\ln x}}{x}} dx = \frac{1}{{\ln 2}}\int u du \cr & {\text{integrate using the power rule }}\int {{x^n}dx = \frac{{{x^{n + 1}}}}{{n + 1}} + C} \cr & = \frac{1}{{\ln 2}}\left( {\frac{{{u^2}}}{2}} \right) + C \cr & {\text{simplifying}} \cr & = \frac{1}{{2\ln 2}}{u^2} + C \cr & {\text{write in terms of }}x{\text{ replace }}\ln x{\text{ for }}u \cr & = \frac{{{{\ln }^2}x}}{{2\ln 2}} + C \cr & {\text{Use the result with limits of integration for }}x \cr & \int_1^4 {\frac{{{{\log }_2}x}}{x}} dx = \left[ {\frac{{{{\ln }^2}x}}{{2\ln 2}}} \right]_1^4 \cr & {\text{use fundamental theorem of calculus: }}\cr & \int_a^b {f\left( x \right)} dx = F\left( b \right) - F\left( a \right).\,\,\,\,\left( {{\text{see page 281}}} \right) \cr & = \frac{{{{\ln }^2}4}}{{2\ln 2}} - \frac{{{{\ln }^2}1}}{{2\ln 2}} \cr & {\text{simplifying}} \cr & = \frac{{{{\ln }^2}4}}{{2\ln 2}} = \frac{{{{\ln }^2}4}}{{\ln {2^2}}} = \frac{{{{\ln }^2}4}}{{\ln 4}} \cr & = \ln 4 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.