Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.3 - Exponential Functions - Exercises 7.3 - Page 391: 110

Answer

\begin{aligned} \frac{1}{\ln a} \int_{1}^{x} \frac{1}{t} \ dt =\log _{a} x, \ \ \ x>0 \end{aligned}

Work Step by Step

Given $$\frac{1}{\ln a} \int_{1}^{x} \frac{1}{t} \ dt $$ So, we have \begin{aligned} I&=\frac{1}{\ln a} \int_{1}^{x} \frac{1}{t} \ dt\\ &=\left[\frac{1}{\ln a} \ln |t|\right]_{1}^{x}\\ &=\frac{\ln x}{\ln a}-\frac{\ln 1}{\ln a}\\ \end{aligned} Since $\frac{\ln x}{\ln a}=\log _{a}x$ We know that: $\ln 1 =0$ Thus: $I=\log _{a} x, \ \ \ x>0$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.