Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.3 - Exponential Functions - Exercises 7.3 - Page 391: 95

Answer

$${3^{\sqrt 2 + 1}}$$

Work Step by Step

$$\eqalign{ & \int_0^3 {\left( {\sqrt 2 + 1} \right){x^{\sqrt 2 }}} dx \cr & {\text{Take out the constant from the integral:}} \cr & = \left( {\sqrt 2 + 1} \right)\int_0^3 {{x^{\sqrt 2 }}} dx \cr & {\text{integrate using the power rule }}\int {{x^n}dx = \frac{{{x^{n + 1}}}}{{n + 1}} + C,{\text{ }}where{\text{ }}n \ne - 1.{\text{ }}S{\text{o}}{\text{,}}} \cr & = \left( {\sqrt 2 + 1} \right)\left( {\frac{{{x^{\sqrt 2 + 1}}}}{{\sqrt 2 + 1}}} \right)_0^3 \cr & {\text{simplifying}} \cr & = \left( {{x^{\sqrt 2 + 1}}} \right)_0^3 \cr & {\text{use fundamental theorem of calculus: }}\cr & \int_a^b {f\left( x \right)} dx = F\left( b \right) - F\left( a \right).\,\,\,\,\left( {{\text{see page 281}}} \right) \cr & = {3^{\sqrt 2 + 1}} - {0^{\sqrt 2 + 1}} \cr & = {3^{\sqrt 2 + 1}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.