Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.3 - Exponential Functions - Exercises 7.3 - Page 391: 53

Answer

$y=2e^{-x}+2x-1$

Work Step by Step

$\displaystyle \frac{d^{2}y}{dx^{2}}=2e^{-x}\quad $... integrate both sides ... $\displaystyle \quad \int e^{u}du=e^{u}+C, \qquad $so take $\left[\begin{array}{l} u=-x,\\ du=-dx \end{array}\right]$ $... \quad $so $2\displaystyle \int e^{-x}dx=-2\int e^{u}d^{u}=-2e^{-x}+C$ $\displaystyle \frac{dy}{dx}=-2e^{-2x}+D\qquad $... find C using $y'(0)=1$ $1=-2e^{0}+D$ $2=D$ So, $\displaystyle \frac{dy}{dx}=-2e^{-x}+2\quad $... integrate both sides (use same sub as above) $... \displaystyle \int 2e^{-x}dx=2e^{-x}+C$ $y=2e^{-x}+2x+D\qquad $... find $D$ using $y(0)=1$ $1=2e^{0}+0+D$ $D=-1$ So, $y=2e^{-x}+2x-1$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.