Answer
$$\frac{{3{x^{\sqrt 3 + 1}}}}{{\sqrt 3 + 1}} + C $$
Work Step by Step
$$\eqalign{
& \int {3{x^{\sqrt 3 }}dx} \cr
& {\text{Take out the constant from the integral:}} \cr
& = 3\int {{x^{\sqrt 3 }}dx} \cr
& {\text{integrate using the power rule }}\int {{x^n}dx = \frac{{{x^{n + 1}}}}{{n + 1}} + C,{\text{ }}where{\text{ }}n \ne - 1.{\text{ }}S{\text{o}}{\text{,}}} \cr
& = 3\left( {\frac{{{x^{\sqrt 3 + 1}}}}{{\sqrt 3 + 1}}} \right) + C \cr
& {\text{simplifying}} \cr
& = \frac{{3{x^{\sqrt 3 + 1}}}}{{\sqrt 3 + 1}} + C \cr} $$