Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.3 - Exponential Functions - Exercises 7.3 - Page 391: 82

Answer

$$\frac{d y}{d t}=\sin t+t \cos t $$

Work Step by Step

Given $$ y=\frac{t \ln \left(\left(e^{\ln 3}\right)^{\sin t}\right)}{\ln 3} $$ Since $$\log_{a}z=\frac{\ln z}{\ln a}$$ So, we have \begin{aligned} y& =\frac{t \ln \left(\left(e^{\ln 3}\right)^{\sin t}\right)}{\ln 3}\\ &=\frac{t \ln \left( e^{\sin t\ln 3} \right)}{\ln 3}\\ &=\frac{t\sin t\ln 3 \ln \left( e^{} \right)}{\ln 3}\\ &=t \sin t \\ &\Rightarrow \frac{d y}{d t}=\sin t+t \cos t \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.