Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.3 - Exponential Functions - Exercises 7.3 - Page 391: 112

Answer

$$\ y^{\prime} =2\left(x+x^{2 x}+x^{2 x} \ln x\right)$$

Work Step by Step

Given: $y=x^{2}+x^{2 x}$ We get: \begin{aligned} &y=x^{2}+x^{2 x} \Rightarrow y-x^{2}=x^{2 x} \\ &\Rightarrow \ln \left(y-x^{2}\right)=\ln x^{2 x} \\ &\Rightarrow \ln \left(y-x^{2}\right) =2 x \ln x \\ &\text{ differentiate with respect to } \ x, \\ &\Rightarrow \frac{1}{y-x^{2}}\left(y^{\prime}-2 x\right)=2 x \cdot \frac{1}{x}+2 \cdot \ln x=2+2 \ln x\\ &\Rightarrow y^{\prime}-2 x=\left(y-x^{2}\right)(2+2 \ln x) \\ &\Rightarrow y^{\prime} =\left(\left(x^{2}+x^{2 x}\right)-x^{2}\right)(2+2 \ln x)+2 x\\ &\ \ \ \ \ \ \ \ \ \ =2\left(x+x^{2 x}+x^{2 x} \ln x\right)\end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.