Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.3 - Exponential Functions - Exercises 7.3 - Page 391: 118

Answer

$$ y^{\prime}=\left(\frac{\ln (\ln x)+1}{x}\right)(\ln x)^{\ln x}$$

Work Step by Step

Given $$ y=(\ln x)^{\ln x} $$ So, we have \begin{aligned} &y=(\ln x)^{\ln x} \\ &\Rightarrow \ln y=(\ln x) \ln (\ln x) \\ &\text{ differentiate with respect to } \ x,\\ &\Rightarrow \frac{y^{\prime}}{y}=\left(\frac{1}{x}\right) \ln (\ln x)+(\ln x)\left(\frac{1}{\ln x}\right) \frac{d}{d x}(\ln x)\\ & \ \ \ \ \ \ \ \ \ \ \ \ =\frac{\ln (\ln x)}{x}+\frac{1}{x} \\&\Rightarrow y^{\prime}=y \left(\frac{\ln (\ln x)+1}{x}\right) \\&\\&\Rightarrow y^{\prime}=\left(\frac{\ln (\ln x)+1}{x}\right)(\ln x)^{\ln x} \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.