Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.3 - Exponential Functions - Exercises 7.3 - Page 391: 72

Answer

$$\frac{{dy}}{{dr}} = \frac{1}{r}\left( {\frac{{{{\log }_3}r}}{{\ln 9}} + \frac{{{{\log }_9}r}}{{\ln 3}}} \right)$$

Work Step by Step

$$\eqalign{ & y = {\log _3}r \cdot {\log _9}r \cr & {\text{Find the derivative of }}y{\text{ with respect to }}r \cr & \frac{{dy}}{{dr}} = \frac{d}{{dx}}\left[ {{{\log }_3}r \cdot {{\log }_9}r} \right] \cr & {\text{Use the product rule}} \cr & \frac{{dy}}{{dr}} = {\log _3}r\frac{d}{{dr}}\left[ {{{\log }_9}r} \right] + {\log _9}r\frac{d}{{dr}}\left[ {{{\log }_3}r} \right] \cr & {\text{Use the rule }}\frac{d}{{dx}}\left[ {{{\log }_a}x} \right] = \frac{1}{{\left( {\ln a} \right)x}}\cr &{\text{Then}} \cr & \frac{{dy}}{{dr}} = {\log _3}r\left( {\frac{1}{{\left( {\ln 9} \right)r}}} \right) + {\log _9}r\left( {\frac{1}{{\left( {\ln 3} \right)r}}} \right) \cr & {\text{Simplifying, we get:}} \cr & \frac{{dy}}{{dr}} = \frac{{{{\log }_3}r}}{{\left( {\ln 9} \right)r}} + \frac{{{{\log }_9}r}}{{\left( {\ln 3} \right)r}} \cr & \frac{{dy}}{{dr}} = \frac{1}{r}\left( {\frac{{{{\log }_3}r}}{{\ln 9}} + \frac{{{{\log }_9}r}}{{\ln 3}}} \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.