Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.3 - Exponential Functions - Exercises 7.3 - Page 391: 57

Answer

$$\frac{{dy}}{{ds}} = \frac{{{5^{\sqrt s }}\ln 5}}{{2\sqrt s }}$$

Work Step by Step

$$\eqalign{ & y = {5^{\sqrt s }} \cr & {\text{Find the derivative of }}y{\text{ with respect to }}s \cr & \frac{{dy}}{{ds}} = \frac{d}{{ds}}\left[ {{5^{\sqrt s }}} \right] \cr & {\text{use the rule }}\frac{d}{{dx}}\left[ {{a^u}} \right] = {a^x}\ln a\frac{{du}}{{dx}}. \cr & {\text{For this exercise}}{\text{, let }}a = 5.{\text{ and }}u = \sqrt s,{\text{ }}x = s.{\text{ Then}}{\text{,}} \cr & \frac{{dy}}{{ds}} = {5^{\sqrt s }}\ln 5\frac{d}{{ds}}\left[ {\sqrt s } \right] \cr & {\text{solve the derivative and simplify}} \cr & \frac{{dy}}{{ds}} = {5^{\sqrt s }}\ln 5\left( {\frac{1}{{2\sqrt s }}} \right) \cr & \frac{{dy}}{{ds}} = \frac{{{5^{\sqrt s }}\ln 5}}{{2\sqrt s }} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.