Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.3 - Exponential Functions - Exercises 7.3 - Page 391: 60

Answer

$$\frac{{dy}}{{dt}} = \left( {1 - e} \right){t^{ - e}}$$

Work Step by Step

$$\eqalign{ & y = {t^{1 - e}} \cr & {\text{Find the derivative of }}y{\text{ with respect to }}t \cr & \frac{{dy}}{{dt}} = \frac{d}{{dt}}\left[ {{t^{1 - e}}} \right] \cr & {\text{Use the power rule for differentiation }}\frac{d}{{dt}}\left[ {{t^n}} \right] = {t^{n - 1}};\cr & {\text{ Let }}n = 1 - e.{\text{ Then}}{\text{,}} \cr & \frac{{dy}}{{dt}} = \left( {1 - e} \right){t^{\left( {1 - e} \right) - 1}} \cr & {\text{Simplify}} \cr & \frac{{dy}}{{dt}} = \left( {1 - e} \right){t^{1 - e - 1}} \cr & \frac{{dy}}{{dt}} = \left( {1 - e} \right){t^{ - e}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.