Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.3 - Exponential Functions - Exercises 7.3 - Page 391: 115

Answer

$$ y^{\prime}=(\sin x)^{x}[\ln (\sin x)+x \cot x]$$

Work Step by Step

Given $$ y=(\sin x)^{x} $$ So, we have \begin{aligned} &y=(\sin x)^{x} \\ &\Rightarrow \ln y=\ln (\sin x)^{x}\\ & \ \ \ \ \ \ \ \ \ \ \ \ \ =x \ln (\sin x) \\ &\text{ differentiate with respect to } \ x, \\ &\Rightarrow \frac{y^{\prime}}{y}=\ln (\sin x)+x\left(\frac{\cos x}{\sin x}\right) \\ &\Rightarrow y^{\prime}=y[\ln (\sin x)+x \cot x]\\ &\Rightarrow y^{\prime}=(\sin x)^{x}[\ln (\sin x)+x \cot x] & \ \ \ \ \ \ \ \ \ \ \ \ \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.