Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.3 - Exponential Functions - Exercises 7.3 - Page 391: 111

Answer

$$ y^{\prime}=(x+1)^{x}\left[\frac{x}{x+1}+\ln (x+1)\right]$$

Work Step by Step

Given $$ y=(x+1)^{x} $$ So, we have: \begin{aligned} &y=(x+1)^{x} \\ &\Rightarrow \ln y=\ln (x+1)^{x} \\ &\Rightarrow \ln y=x \ln (x+1) \\ &\text{ differentiate with respect to } \ x,\\ &\Rightarrow \frac{y^{\prime}}{y}=\ln (x+1)+x \cdot \frac{1}{(x+1)} \\& \Rightarrow y^{\prime}=y\left[\ln (x+1)+ \frac{x}{(x+1)} \right] \\& \Rightarrow y^{\prime}=(x+1)^{x}\left[\frac{x}{x+1}+\ln (x+1)\right] \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.