Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.3 - Exponential Functions - Exercises 7.3 - Page 391: 75

Answer

$$\frac{d y}{d \theta}=\sin \left(\log _{7} \theta\right)+\frac{1}{\ln 7} \cos \left(\log _{7} \theta\right)$$

Work Step by Step

Given $$ y =\theta \sin \left(\log _{7} \theta\right)$$ Since $$\log_{a}z=\frac{\ln z}{\ln a}$$ So, we have \begin{aligned} y&=\theta \sin \left(\log _{7} \theta\right)\\ &=\theta \sin \left(\frac{\ln \theta}{\ln 7}\right)\\ & \Rightarrow \frac{d y}{d \theta}=\sin \left(\frac{\ln \theta}{\ln 7}\right)+\theta\left[\cos \left(\frac{\ln \theta}{\ln 7}\right)\right]\left(\frac{1}{\theta \ln 7}\right)\\ &\ \ \ \ \ \ \ \ \ \ \ \ \ =\sin \left(\log _{7} \theta\right)+\frac{1}{\ln 7} \cos \left(\log _{7} \theta\right)\\ \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.