Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.3 - Exponential Functions - Exercises 7.3 - Page 391: 114

Answer

$$\frac{d y}{d t}=\left(\frac{\ln t+2}{2 \sqrt{t}}\right) t^ \sqrt{t}$$

Work Step by Step

Given $$ y=(\sqrt{t})^{t} $$ So, we have \begin{aligned} &y=t^{\sqrt{t}}=t^{\left(t^{\frac{1}{2}}\right)}\\ & \Rightarrow \ln y=\ln t^{ t^{\frac{1}{2}}} \\ & \Rightarrow \ln y=\left(t^{1 / 2}\right)(\ln t) \\ &\text{ differentiate with respect to } \ t, \ \\ &\Rightarrow \frac{1}{y} \frac{d y}{d t} =\left(\frac{1}{2} t^{-1 / 2}\right)(\ln t)+t^{1 / 2}\left(\frac{1}{t}\right)\\ & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\frac{\ln t+2}{2 \sqrt{t}} \\ &\Rightarrow \frac{d y}{d t}=\left(\frac{\ln t+2}{2 \sqrt{t}}\right) y\\ &\Rightarrow \frac{d y}{d t}=\left(\frac{\ln t+2}{2 \sqrt{t}}\right) t^ \sqrt{t} & \ \ \ \ \ \ \ \ \ \ \ \ \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.