Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.3 - Exponential Functions - Exercises 7.3 - Page 391: 81

Answer

$$ \frac{d y}{d t}=\frac{1}{t}\\ $$

Work Step by Step

Given $$ y = \log _{2}\left(8 t^{\ln 2}\right)\\$$ Since $$\log_{a}z=\frac{\ln z}{\ln a}$$ So, we have \begin{aligned} y& =\log _{2}\left(8 t^{\ln 2}\right)\\ &=\frac{\ln \left(8\ t^{\ln 2} \right)}{\ln 2}\\ &=\frac{\ln 8+\ln \left(t^{\ln 2} \right)}{\ln 2}\\ &=\frac{\ln 2^3+\ln \left(t^{\ln 2} \right)}{\ln 2}\\ &=\frac{3 \ln 2+(\ln 2)(\ln t)}{\ln 2}\\ &=3+\ln t \\ &\Rightarrow \frac{d y}{d t}=\frac{1}{t}\\ \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.