Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.3 - Exponential Functions - Exercises 7.3 - Page 391: 94

Answer

$$\frac{{\sqrt 2 {x^{\sqrt 2 }}}}{2} + C $$

Work Step by Step

$$\eqalign{ & \int {{x^{\sqrt 2 - 1}}dx} \cr & {\text{integrate using the power rule }}\int {{x^n}dx = \frac{{{x^{n + 1}}}}{{n + 1}} + C,{\text{ }}where{\text{ }}n \ne - 1.{\text{ }}S{\text{o}}{\text{,}}} \cr & = \frac{{{x^{\sqrt 2 - 1 + 1}}}}{{\sqrt 2 - 1 + 1}} + C \cr & {\text{simplifying}} \cr & = \frac{{{x^{\sqrt 2 }}}}{{\sqrt 2 }} + C \cr & {\text{rationalizing the denominator:}} \cr & = \frac{{\sqrt 2 {x^{\sqrt 2 }}}}{{\sqrt 2 \sqrt 2 }} + C \cr & = \frac{{\sqrt 2 {x^{\sqrt 2 }}}}{2} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.