Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.3 - Exponential Functions - Exercises 7.3 - Page 391: 74

Answer

$$\frac{d y}{d x} =\frac{1}{x(3 x+2)}$$

Work Step by Step

Given $$ y =\log _{5} \sqrt{\left(\frac{7 x}{3 x+2}\right)^{\ln 5}}$$ Since $$\log_{a}z=\frac{\ln z}{\ln a}$$ So, we have \begin{aligned} y&=\log _{5}\left(\frac{7 x}{3 x+2}\right)^{(1 n 5) / 2}\\ &=\frac{\ln \left(\frac{7 x}{3 x+2}\right)^{(\ln 5) / 2}}{\ln 5}\\ &=\left(\frac{\ln 5}{2}\right)\left[\frac{\ln \left(\frac{7 x}{3 x+2}\right)}{\ln 5}\right]\\ &=\frac{1}{2} \ln \left(\frac{7 x}{3 x+2}\right)\\ &=\frac{1}{2} \ln 7 x-\frac{1}{2} \ln (3 x+2) \\ &\Rightarrow \frac{d y}{d x}=\frac{7}{2 \cdot 7 x}-\frac{3}{2 \cdot(3 x+2)}\\ &\ \ \ \ \ \ \ \ \ \ \ \ \ =\frac{1}{2 x}-\frac{3}{2 (3 x+2)}\\ &\ \ \ \ \ \ \ \ \ \ \ \ \ =\frac{(3 x+2)-3 x}{2 x(3 x+2)}\\ &\ \ \ \ \ \ \ \ \ \ \ \ \ =\frac{2}{2x(3 x+2)}\\ &\ \ \ \ \ \ \ \ \ \ \ \ \ =\frac{1}{x(3 x+2)}\\ \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.