Answer
\begin{aligned}
\int_{1}^{1 / x} \frac{1}{t} d t =-\ln x, \ \ \ \ \ \ \ \ \ \ \ \ \ x>0
\end{aligned}
Work Step by Step
Given $$\int_{1}^{1 / x} \frac{1}{t} d t $$
So, we have
\begin{aligned}
I&=\int_{1}^{1 / x} \frac{1}{t} d t\\
&=[\ln |t|]_{1}^{1 / x}\\
&=\ln \left|\frac{1}{x}\right|-\ln 1\\
&=(\ln 1-\ln |x|)-\ln 1\\
&=-\ln x, \ \ \ \ \ \ \ \ \ \ \ \ \ x>0
\end{aligned}