Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.3 - Exponential Functions - Exercises 7.3 - Page 391: 46

Answer

$$ - {e^{\csc \left( {\pi + t} \right)}} + C $$

Work Step by Step

$$\eqalign{ & \int {{e^{\csc \left( {\pi + t} \right)}}csc\left( {\pi + t} \right)cot\left( {\pi + t} \right)} dt \cr & {\text{set }}u = \csc \left( {\pi + t} \right){\text{ then }}\frac{{du}}{{dt}} = - \csc \left( {\pi + t} \right)\cot \left( {\pi + t} \right) \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \to \frac{{du}}{{ - \csc \left( {\pi + t} \right)\cot \left( {\pi + t} \right)}} = dt \cr & {\text{write the integrand in terms of }}u \cr & \int {{e^{\csc \left( {\pi + t} \right)}}csc\left( {\pi + t} \right)cot\left( {\pi + t} \right)} dt = \int {{e^u}csc\left( {\pi + t} \right)cot\left( {\pi + t} \right)} \left( {\frac{{du}}{{ - \csc \left( {\pi + t} \right)\cot \left( {\pi + t} \right)}}} \right) \cr & {\text{cancel common terms}} \cr & = \int {{e^u}\left( { - du} \right)} \cr & = - \int {{e^u}} du \cr & {\text{integrating}} \cr & = - {e^u} + C \cr & {\text{replace }}\csc \left( {\pi + t} \right){\text{ for }}u \cr & = - {e^{\csc \left( {\pi + t} \right)}} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.