Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.3 - Exponential Functions - Exercises 7.3 - Page 391: 61

Answer

$$\frac{{dy}}{{d\theta }} = - \sqrt 2 \sin \theta {\left( {\cos \theta } \right)^{\sqrt 2 - 1}}$$

Work Step by Step

$$\eqalign{ & y = {\left( {\cos \theta } \right)^{\sqrt 2 }} \cr & {\text{Find the derivative of }}y{\text{ with respect to }}\theta \cr & \frac{{dy}}{{d\theta }} = \frac{d}{{d\theta }}\left[ {{{\left( {\cos \theta } \right)}^{\sqrt 2 }}} \right] \cr & {\text{Use the general power rule for differentiation }}\cr & \frac{d}{{d\theta }}\left[ {{u^n}} \right] = n{u^{n - 1}}\frac{{du}}{{d\theta }}{\text{ }} \cr & {\text{Let }}n = \sqrt 2 {\text{ and }}u = \cos \theta {\text{; Then}}{\text{,}} \cr & \frac{{dy}}{{d\theta }} = \sqrt 2 {\left( {\cos \theta } \right)^{\sqrt 2 - 1}}\frac{d}{{d\theta }}\left[ {\cos \theta } \right] \cr & {\text{solve the derivative}} \cr & \frac{{dy}}{{d\theta }} = \sqrt 2 {\left( {\cos \theta } \right)^{\sqrt 2 - 1}}\left( { - \sin \theta } \right) \cr & {\text{simplify}} \cr & \frac{{dy}}{{d\theta }} = - \sqrt 2 \sin \theta {\left( {\cos \theta } \right)^{\sqrt 2 - 1}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.