Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.3 - Exponential Functions - Exercises 7.3 - Page 391: 45

Answer

$$\frac{1}{\pi }{e^{\sec \pi t}} + C $$

Work Step by Step

$$\eqalign{ & \int {{e^{\sec \pi t}}\sec \pi t} \tan \pi tdt \cr & {\text{set }}u = \sec \pi t{\text{ then }}\frac{{du}}{{dt}} = \sec \pi t\tan \pi t\left( \pi \right) \to \frac{{du}}{{\pi \sec \pi t\tan \pi t}} = dt \cr & {\text{write the integrand in terms of }}u \cr & \int {{e^{\sec \pi t}}\sec \pi t} \tan \pi tdt = \int {{e^{\sec \pi t}}\sec \pi t} \tan \pi t\left( {\frac{{du}}{{\pi \sec \pi t\tan \pi t}}} \right) \cr & {\text{cancel common terms}} \cr & = \int {{e^u}\left( {\frac{{du}}{\pi }} \right)} \cr & = \frac{1}{\pi }\int {{e^u}} du \cr & {\text{integrating}} \cr & = \frac{1}{\pi }{e^u} + C \cr & {\text{replace }}\sec \pi t{\text{ for }}u \cr & = \frac{1}{\pi }{e^{\sec \pi t}} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.