Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.3 - Exponential Functions - Exercises 7.3 - Page 391: 58

Answer

$$\frac{{dy}}{{ds}} = {2^{{s^2} + 1}}s\left( {\ln 2} \right)$$

Work Step by Step

$$\eqalign{ & y = {2^{\left( {{s^2}} \right)}} \cr & {\text{Find the derivative of }}y{\text{ with respect to }}s \cr & \frac{{dy}}{{ds}} = \frac{d}{{ds}}\left[ {{2^{\left( {{s^2}} \right)}}} \right] \cr & {\text{use the rule }}\frac{d}{{dx}}\left[ {{a^u}} \right] = {a^x}\ln a\frac{{du}}{{dx}}. \cr & {\text{For this exercise}}\cr &{\text{let }}a = 2{\text{ and }}u = {s^2},{\text{ }}x = s\cr &{\text{Then}}{\text{,}} \cr & \frac{{dy}}{{ds}} = {2^{\left( {{s^2}} \right)}}\ln 2\frac{d}{{ds}}\left[ {{s^2}} \right] \cr & {\text{solve the derivative and simplify}} \cr & \frac{{dy}}{{ds}} = {2^{\left( {{s^2}} \right)}}\ln 2\left( {2s} \right) \cr & \frac{{dy}}{{ds}} = {2^{{s^2} + 1}}s\left( {\ln 2} \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.