Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.3 - Exponential Functions - Exercises 7.3 - Page 391: 66

Answer

$$\frac{{dy}}{{dt}} = \left( {2\ln 5\sin 2t} \right)\left( {{5^{ - \cos 2t}}} \right)$$

Work Step by Step

$$\eqalign{ & y = {5^{ - \cos 2t}} \cr & {\text{Find the derivative of }}y{\text{ with respect to }}t \cr & \frac{{dy}}{{dt}} = \frac{d}{{dt}}\left[ {{5^{ - \cos 2t}}} \right] \cr & {\text{use the rule }}\frac{d}{{dt}}\left[ {{a^u}} \right] = {a^u}\ln a\frac{{du}}{{dx}}. \cr & {\text{For this exercise}}{\text{, let }}a = 5{\text{ and }}u = - \cos 2t.{\text{ Then}}{\text{,}} \cr & \frac{{dy}}{{dt}} = {5^{ - \cos 2t}}\left( {\ln 5} \right)\frac{d}{{dt}}\left[ { - \cos 2t} \right] \cr & \frac{{dy}}{{dt}} = - {5^{ - \cos 2t}}\left( {\ln 5} \right)\frac{d}{{dt}}\left[ {\cos 2t} \right] \cr & {\text{solve the derivative using }}\frac{d}{{dt}}\left[ {\cos at} \right] = - a\sin at \cr & \frac{{dy}}{{dt}} = - {5^{ - \cos 2t}}\left( {\ln 5} \right)\left( { - 2\sin 2t} \right) \cr & {\text{simplifying}} \cr & \frac{{dy}}{{dt}} = \left( {2\ln 5\sin 2t} \right)\left( {{5^{ - \cos 2t}}} \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.