Answer
$$32,760$$
Work Step by Step
$$\eqalign{
& \int_2^4 {{x^{2x}}\left( {1 + \ln x} \right)} dx \cr
& or \cr
& \int_2^4 {{x^x}\left( {1 + \ln x} \right){x^x}} dx \cr
& {\text{Use substitution:}}\cr
& {\text{Let }}u = {x^{x}}\cr
& {\text{Find the derivative of }}u{\text{; take the natural logaritm}} \cr
& {\text{on both sides of the equation}} \cr
& \,\,\,\,\,\ln u = \ln {x^x} \cr
& {\text{use power property for logarithms}} \cr
& \,\,\,\,\,\ln u = x\ln x \cr
& {\text{Differentiate both sides with respect to }}x \cr
& \,\,\,\frac{d}{{dx}}\left[ {\ln u} \right] = \frac{d}{{dx}}\left[ {x\ln x} \right] \cr
& {\text{use product rule for }}\frac{d}{{dx}}\left[ {x\ln x} \right] \cr
& \,\,\,\frac{d}{{dx}}\left[ {\ln u} \right] = x\frac{d}{{dx}}\left[ {\ln x} \right] + \ln x\frac{d}{{dx}}\left[ x \right] \cr
& {\text{solving derivatives}} \cr
& \,\,\,\frac{1}{u}\frac{{du}}{{dx}} = x\left( {\frac{1}{x}} \right) + \ln x\left( 1 \right) \cr
& \,\,\,\frac{1}{u}\frac{{du}}{{dx}} = 1 + \ln x \cr
& \,\,\,\frac{{du}}{{dx}} = u\left( {1 + \ln x} \right) \cr
& \,\,\,\frac{{du}}{{dx}} = {x^x}\left( {1 + \ln x} \right) \cr
& \,\,\,du = {x^x}\left( {1 + \ln x} \right)dx \cr
& \cr
& {\text{changing the limits of integration}} \cr
& \,\,\,\,\,\,{\text{For }}x = 4,{\text{ }}u = {4^4} = 256 \cr
& \,\,\,\,\,\,{\text{For }}x = 2,{\text{ }}u = {2^2} = 4 \cr
& {\text{write the integral in terms of }}u \cr
& \int_2^4 {{x^x}\left( {1 + \ln x} \right){x^x}} dx = \int_4^{256} {udu} \cr
& {\text{integrate using the power rule}} \cr
& = \left( {\frac{{{u^2}}}{2}} \right)_4^{256} \cr
& {\text{use fundamental theorem of calculus: }}\cr
& \int_a^b {f\left( x \right)} dx = F\left( b \right) - F\left( a \right).\,\,\,\,\left( {{\text{see page 281}}} \right) \cr
& = \left( {\frac{{{{\left( {256} \right)}^2}}}{2} - \frac{{{{\left( 4 \right)}^2}}}{2}} \right) \cr
& {\text{simplifying}} \cr
& = 32,760 \cr} $$