Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.3 - Exponential Functions - Exercises 7.3 - Page 391: 78

Answer

$$ y^{\prime}= \frac{5^{\theta} \ln 5\left(2-\log _{5} \theta\right)(\theta \ln 5+1)+5^{\theta}}{\ln 5\left(2-\log _{5} \theta\right)^{2}}$$

Work Step by Step

Given $$ y = \frac{\theta .5^{\theta}}{2-\log _{5} \theta}$$ Since $$\log_{a}z=\frac{\ln z}{\ln a}$$ So, we have \begin{aligned} y& = \frac{\theta .5^{\theta}}{2-\log _{5} \theta}\\ &=\frac{\theta .5^{\theta}}{2-\frac{\ln\theta}{\ln 5}} \\ &\Rightarrow y^{\prime}=\frac{\left(2-\frac{\ln \theta }{\ln 5}\right)\left(\theta \cdot 5^{\theta} \ln 5+5^{\theta}(1)\right)-\left(\theta \cdot 5^{\theta}\right)\left(-\frac{1}{\theta \ln 5}\right)}{\left(2-\frac{\ln \theta}{\ln 5}\right)^{2}}\\ &\ \ \ \ \ \ \ \ \ \ \ =\frac{(\ln 5) \ \left(2-\frac{\ln \theta }{\ln 5}\right)\left(\theta \cdot 5^{\theta} \ln 5+5^{\theta} \right)+(\ln 5) \ \left(\theta \cdot 5^{\theta}\right)\left(\frac{1}{\theta \ln 5}\right)}{(\ln 5) \left(2-\frac{\ln \theta}{\ln 5}\right)^{2}}\\ &\ \ \ \ \ \ \ \ \ \ \ =\frac{(\ln 5) \ \left(2- \log_5 \theta \right)\left(\theta \cdot 5^{\theta} \ln 5+5^{\theta} \right)+5^{\theta} }{(\ln 5) \left(2- \log_5 \theta \right)^{2}}\\ &\ \ \ \ \ \ \ \ \ \ \ =\frac{5^{\theta} \ln 5\left(2-\log _{5} \theta\right)(\theta \ln 5+1)+5^{\theta}}{\ln 5\left(2-\log _{5} \theta\right)^{2}}\\ \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.