Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.3 - Exponential Functions - Exercises 7.3 - Page 391: 76

Answer

$$\frac{dy }{d \theta} =\frac{1}{\ln7}\left[ 2\cot 2 \theta - 1-\ln 2\right]\\ $$

Work Step by Step

Given $$ y =\log _{7}\left(\frac{\sin \theta \cos \theta}{e^{\theta} 2^{\theta}}\right)\\$$ Since $$\log_{a}z=\frac{\ln z}{\ln a}$$ So, we have \begin{aligned} y& =\frac{1}{\ln7}\ln \left(\frac{2 \sin \theta \cos \theta}{2 e^{\theta} 2^{\theta}}\right)\\ & =\frac{1}{\ln7}\ln\left(\frac{\sin 2 \theta}{e^{\theta} 2^{\theta+1}}\right)\\ & =\frac{1}{\ln7}\left[\ln(\sin 2 \theta)-\ln\left(e^{\theta} 2^{\theta+1}\right)\right]\\ & =\frac{1}{\ln7}\left[\ln(\sin 2 \theta)-\ln \left(e^{\theta}\right)-\ln \left(2^{\theta+1}\right)\right]\\ &=\frac{1}{\ln7}\left[\ln(\sin 2 \theta)-\theta \ln e-(\theta+1) \ln 2\right]\\ &\Rightarrow \frac{dy }{d \theta}=\frac{1}{\ln7}\left[\frac{2\cos 2 \theta}{\sin 2 \theta}- \ln e-\ln 2\right]\\ &\ \ \ \ \ \ \ \ \ \ \ \ =\frac{1}{\ln7}\left[ 2\cot 2 \theta - 1-\ln 2\right]\\ \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.