Answer
\begin{aligned}
\int_{1}^{\ln x} \frac{1}{t} d t =\ln (\ln x), \ \ \ \ \ \ \ \ x>1
\end{aligned}
Work Step by Step
Given $$\int_{1}^{\ln x} \frac{1}{t} d t $$
So, we have
\begin{aligned}
I&=\int_{1}^{\ln x} \frac{1}{t} d t\\
&=[\ln |t|]_{1}^{\ln x}\\
&=\ln |\ln x|-\ln 1\\
&=\ln (\ln x), \ \ \ \ \ \ \ \ x>1
\end{aligned}