Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.3 - Exponential Functions - Exercises 7.3 - Page 391: 52

Answer

$$ y = - \frac{1}{\pi }\tan \left( {\pi {e^{ - t}}} \right) + \frac{3}{\pi }$$

Work Step by Step

$$\eqalign{ & \frac{{dy}}{{dt}} = {e^{ - t}}se{c^2}\left( {\pi {e^{ - t}}} \right),\,\,\,\,\,\,\,y\left( {\ln 4} \right) = \frac{2}{\pi } \cr & {\text{Separate the variables}} \cr & dy = {e^{ - t}}se{c^2}\left( {\pi {e^{ - t}}} \right)dt \cr & {\text{Integrate both sides}} \cr & y = \int {{e^{ - t}}se{c^2}\left( {\pi {e^{ - t}}} \right)dt} \cr & {\text{Use substitution}}\cr &{\text{Let }}u = \pi {e^{ - t}};{\text{ then }}du = - \pi {e^{ - t}}dt \cr & y = \int {{e^{ - t}}se{c^2}u\left( {\frac{{du}}{{ - \pi {e^{ - t}}}}} \right)} \cr & y = \int {se{c^2}u\left( {\frac{{du}}{{ - \pi }}} \right)} \cr & y = - \frac{1}{\pi }\int {se{c^2}udu} \cr & y = - \frac{1}{\pi }\tan u + C \cr & {\text{Write the integral in terms of }}t \cr & y = - \frac{1}{\pi }\tan \left( {\pi {e^{ - t}}} \right) + C\,\,\,\,\left( {\bf{1}} \right) \cr & {\text{Use initial condition }}y\left( {\ln 4} \right) = \frac{2}{\pi } \cr & \frac{2}{\pi } = - \frac{1}{\pi }\tan \left( {\pi {e^{ - \ln 4}}} \right) + C \cr & \frac{2}{\pi } = - \frac{1}{\pi }\tan \left( {\frac{\pi }{4}} \right) + C \cr & C = \frac{2}{\pi } + \frac{1}{\pi } \cr & C = \frac{3}{\pi } \cr & \cr & {\text{Then}}{\text{, substituting }}C = \frac{3}{\pi }{\text{ in }}\left( {\bf{1}} \right) \cr & y = - \frac{1}{\pi }\tan \left( {\pi {e^{ - t}}} \right) + \frac{3}{\pi } \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.