Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.3 - Exponential Functions - Exercises 7.3 - Page 391: 49

Answer

$$\ln \left( {1 + {e^r}} \right) + C $$

Work Step by Step

$$\eqalign{ & \int {\frac{{{e^r}}}{{1 + {e^r}}}} dr \cr & {\text{set }}u = 1 + {e^r}{\text{ then }}\frac{{du}}{{dr}} = {e^r} \to du = {e^r}dr \cr & {\text{write the integrand in terms of }}u \cr & \int {\frac{{{e^r}}}{{1 + {e^r}}}} dr = \int {\frac{{du}}{u}} \cr & {\text{integrating}} \cr & = \ln \left| u \right| + C \cr & {\text{replace }}1 + {e^r}{\text{ for }}u \cr & = \ln \left| {1 + {e^r}} \right| + C \cr & {\text{or}} \cr & = \ln \left( {1 + {e^r}} \right) + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.