Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.3 - Exponential Functions - Exercises 7.3 - Page 391: 92

Answer

$$\frac{1}{{2\ln 2}}\ln \left( {1 + {2^{{x^2}}}} \right) + C $$

Work Step by Step

$$\eqalign{ & \int {\frac{{x{2^{{x^2}}}}}{{1 + {2^{{x^2}}}}}} dx \cr & {\text{Use substitution}}\cr & {\text{Let }}u = 1 + {2^{{x^2}}}\cr & {\text{Then }}du = {2^{{x^2}}}\ln 2\left( {2x} \right)dx,\,\,\,\,dx = \frac{{du}}{{2x\left( {{2^{{x^2}}}} \right)\ln 2}} \cr & {\text{write the integral in terms of }}u \cr & \int {\frac{{x{2^{{x^2}}}}}{{1 + {2^{{x^2}}}}}} dx = \int {\frac{{x{2^{{x^2}}}}}{u}} \frac{{du}}{{2x\left( {{2^{{x^2}}}} \right)\ln 2}} \cr & {\text{cancel the common factors}} \cr & = \int {\frac{1}{u}} \frac{{du}}{{2\ln 2}} \cr & = \frac{1}{{2\ln 2}}\int {\frac{1}{u}} du \cr & {\text{integrate}} \cr & = \frac{1}{{2\ln 2}}\ln \left| u \right| + C \cr & {\text{write in terms of }}x{\text{; replace }}1 + {2^{{x^2}}}{\text{ for }}u \cr & = \frac{1}{{2\ln 2}}\ln \left( {1 + {2^{{x^2}}}} \right) + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.