Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.3 - Exponential Functions - Exercises 7.3 - Page 391: 106

Answer

$$ - \frac{{{{\ln }^2}8}}{{\ln x}} + C $$

Work Step by Step

$$\eqalign{ & \int {\frac{{dx}}{{x{{\left( {{{\log }_8}x} \right)}^2}}}} \cr & {\text{or we can write}} \cr & = \int {{{\left( {{{\log }_8}x} \right)}^{ - 2}}\left( {\frac{1}{x}} \right)} dx \cr & {\text{using the property }}{\log _a}x = \frac{{\ln x}}{{\ln a}}{\text{ }}\left( {{\text{see example 7b}}} \right) \cr & = \int {{{\left( {\frac{{\ln x}}{{\ln 8}}} \right)}^{ - 2}}\left( {\frac{1}{x}} \right)} dx \cr & = \int {{{\left( {\frac{{\ln 8}}{{\ln x}}} \right)}^2}\left( {\frac{1}{x}} \right)} dx \cr & = {\ln ^2}8\int {{{\left( {\frac{1}{{\ln x}}} \right)}^2}\left( {\frac{1}{x}} \right)} dx \cr & {\text{use substitution}}{\text{. Let }}u = \ln x,{\text{ then }}du = \frac{1}{x}dx \cr & {\text{write the integral in terms of }}u \cr & = {\ln ^2}8\int {\frac{1}{{{u^2}}}} du \cr & = {\ln ^2}8\int {{u^{ - 2}}} du \cr & {\text{integrate using the power rule }}\int {{u^n}du = \frac{{{u^{n + 1}}}}{{n + 1}} + C} \cr & = {\ln ^2}8\left( {\frac{{{u^{ - 1}}}}{{ - 1}}} \right) + C \cr & = - \frac{{{{\ln }^2}8}}{u} + C \cr & {\text{write in terms of }}x{\text{; replace }}\ln x{\text{ for }}u \cr & = - \frac{{{{\ln }^2}8}}{{\ln x}} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.