Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.3 - Exponential Functions - Exercises 7.3 - Page 391: 73

Answer

$$\frac{d y}{d x}= \frac{-2}{(x+1)(x-1)}\\ $$

Work Step by Step

Given $$ y=\log _{3}\left(\left(\frac{x+1}{x-1}\right)^{\ln 3}\right)$$ Since $$\log_{a}z=\frac{\ln z}{\ln a}$$ So, we have \begin{aligned} y&=\frac{\ln \left(\frac{x+1}{x-1}\right)^{\ln 3}}{\ln 3}\\ &=\frac{(\ln 3) \ln\left(\frac{x+1}{x-1}\right)}{\ln 3}\\ &=\ln \left(\frac{x+1}{x-1}\right)\\ &=\ln (x+1)-\ln (x-1)\\ & \Rightarrow \frac{d y}{d x}=\frac{1}{x+1}-\frac{1}{x-1}\\ &\ \ \ \ \ \ \ \ \ \ \ \ \ =\frac{x-1-x-1}{(x+1)(x-1)}\\ &\ \ \ \ \ \ \ \ \ \ \ \ \ =\frac{-2}{(x+1)(x-1)}\\ \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.