Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.3 - Exponential Functions - Exercises 7.3 - Page 391: 47

Answer

$$1$$

Work Step by Step

$$\eqalign{ & \int_{\ln \left( {\pi /6} \right)}^{\ln \left( {\pi /2} \right)} {2{e^v}\cos {e^v}} dv \cr & = 2\int_{\ln \left( {\pi /6} \right)}^{\ln \left( {\pi /2} \right)} {{e^v}\cos {e^v}} dv \cr & {\text{Use substitution}}{\text{. Let }}u = {e^v},{\text{ so that }}du = {e^v}dv \cr & {\text{The new limits on }}u{\text{ are found as follows}} \cr & \,\,\,\,\,\,{\text{If }}\theta = \ln \left( {\pi /2} \right),{\text{ then }}u = {e^{\ln \left( {\pi /2} \right)}} = \frac{\pi }{2} \cr & \,\,\,\,\,\,{\text{If }}\theta = \ln \left( {\pi /6} \right),{\text{ then }}u = {e^{\ln \left( {\pi /2} \right)}} = \frac{\pi }{6} \cr & {\text{Then}} \cr & 2\int_{\ln \left( {\pi /6} \right)}^{\ln \left( {\pi /2} \right)} {{e^v}\cos {e^v}} dv = 2\int_{\pi /6}^{\pi /2} {\cos u} du \cr & {\text{Integrate}} \cr & \int_{\pi /6}^{\pi /2} {\cos u} du = 2\left( {\sin u} \right)_{\pi /6}^{\pi /2} \cr & {\text{Use fundamental theorem of calculus }}\int_a^b {f\left( x \right)} dx = F\left( b \right) - F\left( a \right).\,\,\,\,\left( {{\text{see page 281}}} \right) \cr & = 2\sin \left( {\frac{\pi }{2}} \right) - 2\sin \left( {\frac{\pi }{6}} \right) \cr & {\text{Simplifying}} \cr & = 2 - 2\left( {\frac{1}{2}} \right) \cr & = 1 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.