Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.3 - Exponential Functions - Exercises 7.3 - Page 391: 69

Answer

$$\frac{{dy}}{{dx}} = \frac{3}{{\left( {\ln 4} \right)x}}$$

Work Step by Step

$$\eqalign{ & y = {\log _4}x + {\log _4}{x^2} \cr & {\text{use the logarithmic property }}{\log _a}{b^n} = n{\log _a}b \cr & y = {\log _4}x + 2{\log _4}x \cr & {\text{Find the derivative of }}y{\text{ with respect to }}x \cr & \frac{{dy}}{{dx}} = \frac{d}{{dx}}\left[ {{{\log }_4}x} \right] + 2\frac{d}{{dx}}\left[ {{{\log }_4}x} \right] \cr & {\text{use the rule }}\frac{d}{{dx}}\left[ {{{\log }_a}x} \right] = \frac{1}{{\left( {\ln a} \right)x}}.{\text{ Then}} \cr & \frac{{dy}}{{dx}} = \frac{1}{{\left( {\ln 4} \right)x}} + 2\left( {\frac{1}{{\left( {\ln 4} \right)x}}} \right) \cr & {\text{simplifying}} \cr & \frac{{dy}}{{dx}} = \frac{3}{{\left( {\ln 4} \right)x}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.