Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.3 - Exponential Functions - Exercises 7.3 - Page 391: 84

Answer

$$ - \frac{1}{{\ln 3}}\ln \left| {3 - {3^x}} \right| + C $$

Work Step by Step

$$\eqalign{ & \int {\frac{{{3^x}}}{{3 - {3^x}}}} dx \cr & {\text{set }}u = 3 - {3^x}{\text{ then }}\frac{{du}}{{dx}} = - {3^x}\ln 3 \to dx = - \frac{1}{{{3^x}\ln 3}}du \cr & {\text{write the integrand in terms of }}u \cr & \int {\frac{{{3^x}}}{{3 - {3^x}}}} dx = \int {\frac{{{3^x}}}{u}} \left( { - \frac{1}{{{3^x}\ln 3}}du} \right) \cr & {\text{cancel the common factor}} \cr & = \int {\frac{1}{u}} \left( { - \frac{1}{{\ln 3}}du} \right) \cr & = - \frac{1}{{\ln 3}}\int {\frac{1}{u}} du \cr & {\text{integrating}} \cr & = - \frac{1}{{\ln 3}}\ln \left| u \right| + C \cr & {\text{replace }}3 - {3^x}{\text{ for }}u \cr & = - \frac{1}{{\ln 3}}\ln \left| {3 - {3^x}} \right| + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.