Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.3 - Exponential Functions - Exercises 7.3 - Page 391: 65

Answer

$$\frac{{dy}}{{dt}} = 3\left( {\cos 3t} \right)\left( {\ln 2} \right){2^{\sin 3t}}$$

Work Step by Step

$$\eqalign{ & y = {2^{\sin 3t}} \cr & {\text{Find the derivative of }}y{\text{ with respect to }}t \cr & \frac{{dy}}{{dt}} = \frac{d}{{dt}}\left[ {{2^{\sin 3t}}} \right] \cr & {\text{use the rule }}\frac{d}{{dt}}\left[ {{a^u}} \right] = {a^u}\ln a\frac{{du}}{{dx}}. \cr & {\text{For this exercise}}{\text{, let }}a = 2{\text{ and }}u = \sin 3t.{\text{ Then}}{\text{,}} \cr & \frac{{dy}}{{dt}} = {2^{\sin 3t}}\left( {\ln 2} \right)\frac{d}{{dt}}\left[ {\sin 3t} \right] \cr & {\text{solve the derivative and simplify}} \cr & \frac{{dy}}{{dt}} = {2^{\sin 3t}}\left( {\ln 2} \right)\left( {\cos 3t} \right)\left( 3 \right) \cr & \frac{{dy}}{{dt}} = 3\left( {\cos 3t} \right)\left( {\ln 2} \right){2^{\sin 3t}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.