Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.3 - Exponential Functions - Exercises 7.3 - Page 391: 117

Answer

$$ y^{\prime} =x^{x}(1+\ln x) \cos x^{x}$$

Work Step by Step

Given $$ y=x^{\sin x} $$ So, we have \begin{aligned} &y=\sin x^{x} \\ &\Rightarrow y^{\prime}=\cos x^{x} \frac{d}{d x}\left(x^{x}\right)\\ & \text{let} \ \ u=x^{x} \Rightarrow \ln u=\ln x^{x}\\ &\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =x \ln x\\ &\text{ differentiate with respect to } \ x,\\ & \Rightarrow \frac{u^{\prime}}{u}=x \cdot \frac{1}{x}+1 \cdot \ln x=1+\ln x \\ &\Rightarrow u^{\prime}=x^{x}(1+\ln x) \\ & \text{so, we get}\\ &\Rightarrow y^{\prime}=\cos x^{x} \cdot x^{x}(1+\ln x)\\ &\ \ \ \ \ \ \ \ \ \ =x^{x} (1+\ln x)\cos x^{x} \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.