Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.3 - Exponential Functions - Exercises 7.3 - Page 391: 87

Answer

$$\frac{1}{{\ln 2}}$$

Work Step by Step

$$\eqalign{ & \int_1^{\sqrt 2 } {x{2^{\left( {{x^2}} \right)}}dx} \cr & {\text{Use substitution:}}\cr & {\text{Let }}u = {x^2},{\text{ then }}du = 2xdx,\,\,\,\,\,xdx = \frac{1}{2}du \cr & {\text{transforming the limits of integration}} \cr & \,\,\,\,\,\,{\text{When }}x = 1,{\text{ }}u = {\left( 1 \right)^2} = 1 \cr & \,\,\,\,\,\,{\text{When }}x = \sqrt 2,{\text{ }}u = {\left( {\sqrt 2 } \right)^2} = 2 \cr & {\text{write the integral in terms of }}u \cr & \int_1^{\sqrt 2 } {x{2^{\left( {{x^2}} \right)}}dx} = \int_1^2 {{2^u}} \left( {\frac{1}{2}du} \right) \cr & = \frac{1}{2}\int_1^2 {{2^u}} du \cr & {\text{integrate using }}\int {{a^u}} du = \frac{{{a^u}}}{{\ln a}} + C \cr & = \frac{1}{2}\left( {\frac{{{2^u}}}{{\ln 2}}} \right)_1^2 \cr & = \frac{1}{{2\ln 2}}\left( {{2^u}} \right)_1^2 \cr & {\text{use fundamental theorem of calculus: }}\cr & \int_a^b {f\left( x \right)} dx = F\left( b \right) - F\left( a \right).\,\,\,\,\left( {{\text{see page 281}}} \right) \cr & = \frac{1}{{2\ln 2}}\left( {{2^2} - {2^1}} \right) \cr & {\text{simplifying}} \cr & = \frac{1}{{2\ln 2}}\left( {4 - 2} \right) \cr & = \frac{1}{{\ln 2}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.