Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.3 - Exponential Functions - Exercises 7.3 - Page 391: 54

Answer

$y=\displaystyle \frac{1}{2}t^{2}-\frac{1}{4}e^{2t}+(\frac{1}{2}e^{2}-1)t-(\frac{1}{2}+\frac{1}{4}e^{2})$

Work Step by Step

$\displaystyle \frac{d^{2}y}{dt^{2}}=1-e^{2t}\quad $... integrate both sides ... $\displaystyle \quad \int e^{u}du=e^{u}+C, \qquad $so take $\left[\begin{array}{l} u=2t,\\ du=2dt \end{array}\right]$ $... \quad $so $\displaystyle \int e^{2t}dt=\frac{1}{2}\int e^{u}d^{u}=\frac{1}{2}e^{2t}+C$ $\displaystyle \frac{dy}{dt}=t-\frac{1}{2}e^{2t}+C\quad $... apply $y'(1)=0$ (to find C) $0=(1)-\displaystyle \frac{1}{2}e^{2(1)}+C$ $\displaystyle \frac{1}{2}e^{2}-1=C$ So, $\displaystyle \frac{dy}{dt}=t-\frac{1}{2}e^{2t}+\frac{1}{2}e^{2}-1\quad $... integrate both sides $y=\displaystyle \frac{1}{2}t^{2}-\frac{1}{2}[\frac{1}{2}e^{2t}]+(\frac{1}{2}e^{2}-1)t+D$ ... use the initial value $y(1)=-1$ (to find D) $-1=-1=\displaystyle \frac{1}{2}-\frac{1}{4}e^{2}+\frac{1}{2}e^{2}-1+D$ $D=-\displaystyle \frac{1}{2}-\frac{1}{4}e^{2}\qquad $ so $y=\displaystyle \frac{1}{2}t^{2}-\frac{1}{4}e^{2t}+(\frac{1}{2}e^{2}-1)t-(\frac{1}{2}+\frac{1}{4}e^{2})$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.