Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.3 - Exponential Functions - Exercises 7.3 - Page 391: 80

Answer

$$ \frac{d y}{d t} =\frac{1}{(t\ln t)(\ln 2)}$$

Work Step by Step

Given $$ y = 3 \log _{8}\left(\log _{2} t\right)$$ Since $$\log_{a}z=\frac{\ln z}{\ln a}$$ So, we have \begin{aligned} y& = 3 \log _{8}\left(\log _{2} t\right)\\ &=\frac{3 \ln \left(\log _{2} t\right)}{\ln 8}\\ &=\frac{3 \ln \left(\frac{\ln t}{\ln2}\right)}{\ln 8} \\ &\Rightarrow \frac{d y}{d t}=\left(\frac{3}{\ln 8}\right)\left[\frac{1}{(\ln t) /(\ln 2)}\right]\left(\frac{1}{t \ln 2}\right)\\ &\ \ \ \ \ \ \ \ \ \ \ \ =\frac{3}{t(\ln t)(\ln 8)}\\ &\ \ \ \ \ \ \ \ \ \ \ \ =\frac{3}{t(\ln t)(\ln 2^3)}\\ &\ \ \ \ \ \ \ \ \ \ \ \ =\frac{3}{3t(\ln t)(\ln 2)}\\ &\ \ \ \ \ \ \ \ \ \ \ \ =\frac{1}{(t\ln t)(\ln 2)}\\ \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.