Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.3 - Exponential Functions - Exercises 7.3 - Page 391: 105

Answer

$$\ln 10\left( {\ln \left| {\ln x} \right|} \right) + C $$

Work Step by Step

$$\eqalign{ & \int {\frac{{dx}}{{x{{\log }_{10}}x}}} \cr & {\text{or we can write}} \cr & = \int {{{\left( {{{\log }_{10}}x} \right)}^{ - 1}}\left( {\frac{1}{x}} \right)} dx \cr & {\text{using the property }}{\log _a}x = \frac{{\ln x}}{{\ln a}}{\text{ }}\left( {{\text{see example 7b}}} \right) \cr & = \int {{{\left( {\frac{{\ln x}}{{\ln 10}}} \right)}^{ - 1}}\left( {\frac{1}{x}} \right)} dx \cr & = \int {\left( {\frac{{\ln 10}}{{\ln x}}} \right)\left( {\frac{1}{x}} \right)} dx \cr & = \ln 10\int {\left( {\frac{1}{{\ln x}}} \right)\left( {\frac{1}{x}} \right)} dx \cr & {\text{use substitution}}{\text{. Let }}u = \ln x,{\text{ then }}du = \frac{1}{x}dx \cr & {\text{write the integral in terms of }}u \cr & = \ln 10\int {\frac{1}{u}du} \cr & {\text{integrate}} \cr & = \ln 10\left( {\ln \left| u \right|} \right) + C \cr & {\text{write in terms of }}x{\text{; replace }}\ln x{\text{ for }}u \cr & = \ln 10\left( {\ln \left| {\ln x} \right|} \right) + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.