Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.3 - Exponential Functions - Exercises 7.3 - Page 391: 85

Answer

$$\frac{1}{{2\ln 2}}$$

Work Step by Step

$$\eqalign{ & \int_0^1 {{2^{ - \theta }}} d\theta \cr & {\text{use substitution}}{\text{. Let }}u = - \theta,{\text{ so that }}du = - d\theta \cr & {\text{the new limits on }}u{\text{ are found as follows}} \cr & \,\,\,\,\,\,{\text{If }}\theta = 1,{\text{ }}u = - 1 \cr & \,\,\,\,\,\,{\text{If }}\theta = 0,{\text{ }}u = 0 \cr & {\text{Then}} \cr & \int_0^1 {{2^{ - \theta }}} d\theta = \int_0^{ - 1} {{2^u}} \left( { - du} \right) \cr & {\text{integrate}} \cr & = - \int_0^{ - 1} {{2^u}} du \cr & {\text{integrate using }}\int {{a^u}} du = \frac{{{a^u}}}{{\ln a}} + C \cr & = - \left( {\frac{{{2^u}}}{{\ln 2}}} \right)_0^{ - 1} \cr & {\text{use fundamental theorem of calculus }}\int_a^b {f\left( x \right)} dx = F\left( b \right) - F\left( a \right).\,\,\,\,\left( {{\text{see page 281}}} \right) \cr & = - \left( {\frac{{{2^{ - 1}}}}{{\ln 2}}} \right) + \left( {\frac{{{2^0}}}{{\ln 2}}} \right) \cr & {\text{simplifying}} \cr & = - \left( {\frac{1}{{2\ln 2}}} \right) + \left( {\frac{1}{{\ln 2}}} \right) \cr & = \frac{{ - 1 + 2}}{{2\ln 2}} \cr & = \frac{1}{{2\ln 2}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.