Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.3 - Exponential Functions - Exercises 7.3 - Page 391: 113

Answer

\begin{aligned} \frac{d y}{d t} =(\sqrt{t})^{t}\left(\frac{\ln t}{2}+\frac{1}{2}\right) \end{aligned}

Work Step by Step

Given $$ y=(\sqrt{t})^{t} $$ So, we have \begin{aligned} &y=(\sqrt{t})^{t}=\left(t^{1 / 2}\right)^{t}=t^{t / 2}\\ & \Rightarrow \ln y=\ln t^{t / 2} \\ & \Rightarrow \ln y= \left(\frac{t}{2}\right) \ln t \\ &\text{ differentiate with respect to } \ t, \\ &\Rightarrow \frac{1}{y} \frac{d y}{d t}=\left(\frac{1}{2}\right)(\ln t)+\left(\frac{t}{2}\right)\left(\frac{1}{t}\right)\\ & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\frac{\ln t}{2}+\frac{1}{2}\\ &\Rightarrow \frac{d y}{d t}=y\left(\frac{\ln t}{2}+\frac{1}{2}\right)\\ & \ \ \ \ \ \ \ \ \ \ \ \ =(\sqrt{t})^{t}\left(\frac{\ln t}{2}+\frac{1}{2}\right) \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.