Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.3 - Exponential Functions - Exercises 7.3 - Page 391: 71

Answer

$$\frac{{dy}}{{dx}} = \frac{{{x^2}}}{{\ln 10}} + 3{x^2}{\log _{10}}x $$

Work Step by Step

$$\eqalign{ & y = {x^3}{\log _{10}}x \cr & {\text{Find the derivative of }}y{\text{ with respect to }}x \cr & \frac{{dy}}{{dx}} = \frac{d}{{dx}}\left[ {{x^3}{{\log }_{10}}x} \right] \cr & {\text{use the product rule}} \cr & \frac{{dy}}{{dx}} = {x^3}\frac{d}{{dx}}\left[ {{{\log }_{10}}x} \right] + {\log _{10}}x\frac{d}{{dx}}\left[ {{x^3}} \right] \cr & {\text{use the rules }}\frac{d}{{dx}}\left[ {{x^n}} \right] = n{x^{n - 1}}{\text{ and }}\cr &\frac{d}{{dx}}\left[ {{{\log }_a}x} \right] = \frac{1}{{\left( {\ln a} \right)x}}.{\text{ Then}} \cr & \frac{{dy}}{{dx}} = {x^3}\left( {\frac{1}{{\left( {\ln 10} \right)x}}} \right) + {\log _{10}}x\left( {3{x^2}} \right) \cr & {\text{simplifying}} \cr & \frac{{dy}}{{dx}} = \frac{{{x^2}}}{{\ln 10}} + 3{x^2}{\log _{10}}x \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.