Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.3 - Exponential Functions - Exercises 7.3 - Page 391: 116

Answer

$$ y^{\prime}=x^{\sin x}\left[\frac{\sin x+x(\ln x)(\cos x)}{x}\right]$$

Work Step by Step

Given $$ y=x^{\sin x} $$ So, we have \begin{aligned} &y=x^{\sin x}\\ & \Rightarrow \ln y=\ln x^{\sin x}\\ &\ \ \ \ \ \ \ \ \ \ \ \ \ =(\sin x)(\ln x)\\ &\text{ differentiate with respect to } \ x,\\ & \Rightarrow \frac{y^{\prime}}{y}=(\cos x)(\ln x)+(\sin x)\left(\frac{1}{x}\right)\\ & \ \ \ \ \ \ \ \ \ \ \ \ =\frac{\sin x+x(\ln x)(\cos x)}{x} \\ & \Rightarrow y^{\prime}=y\left[\frac{\sin x+x(\ln x)(\cos x)}{x}\right]\\ & \Rightarrow y^{\prime}=x^{\sin x}\left[\frac{\sin x+x(\ln x)(\cos x)}{x}\right] \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.