Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.6 Using Computer Algebra Systems And Tables Of Integrals - Exercises Set 7.6 - Page 531: 9

Answer

$$\frac{1}{8}\ln \left| {\frac{{x + 4}}{{x - 4}}} \right| + C\,\,\,$$

Work Step by Step

$$\eqalign{ & \int {\frac{1}{{16 - {x^2}}}} dx \cr & {\text{Use the Endpaper Integral Table to evaluate the integral}} \cr & {\text{Rewrite the integrand}} \cr & \int {\frac{1}{{16 - {x^2}}}} dx = \int {\frac{1}{{{4^2} - {x^2}}}} dx \cr & {\text{The integrand has a expression in the form }}{a^2} - {u^2}{\text{ }}{\text{}} \cr & {\text{Use formula 69}} \cr & \left( {69} \right):\,\,\,\,\int {\frac{{du}}{{{a^2} - {u^2}}}} = \frac{1}{{2a}}\ln \left| {\frac{{u + a}}{{u - a}}} \right| + C\,\,\, \cr & {\text{let }}u = x,\,\,\,a = 4 \cr & \int {\frac{1}{{{4^2} - {x^2}}}} dx = \frac{1}{{2\left( 4 \right)}}\ln \left| {\frac{{x + 4}}{{x - 4}}} \right| + C\,\,\, \cr & {\text{simplifying}} \cr & \int {\frac{1}{{16 - {x^2}}}} dx = \frac{1}{8}\ln \left| {\frac{{x + 4}}{{x - 4}}} \right| + C\,\,\, \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.