Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.6 Using Computer Algebra Systems And Tables Of Integrals - Exercises Set 7.6 - Page 531: 28

Answer

$$\frac{1}{{12}}{\tan ^{ - 1}}\frac{{\sin 4x}}{3} + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{{\cos 4x}}{{9 + {{\sin }^2}4x}}dx} ,\,\,\,\,u = \sin 4x \cr & {\text{Using the given substitution}} \cr & u = \sin 4x,\,\,\,\,\,\,\,du = 4\cos 4xdx,\,\,\,\,\,\,dx = \frac{1}{{4\cos 4x}}du \cr & {\text{write in terms of }}u \cr & \int {\frac{{\cos 4x}}{{9 + {{\sin }^2}4x}}dx} = \int {\frac{{\cos 4x}}{{9 + {u^2}}}\left( {\frac{1}{{4\cos 4x}}du} \right)} \cr & = \frac{1}{4}\int {\frac{1}{{9 + {u^2}}}du} \cr & {\text{Use the Endpaper Integral Table to evaluate the integral}} \cr & {\text{By formula 68}} \cr & \left( {68} \right):\,\,\,\,\,\,\int {\frac{{du}}{{{a^2} + {u^2}}} = \frac{1}{a}{{\tan }^{ - 1}}\frac{u}{a} + C} \cr & {\text{take }}a = 3 \cr & \frac{1}{4}\int {\frac{1}{{9 + {u^2}}}du} = \frac{1}{{4\left( 3 \right)}}{\tan ^{ - 1}}\frac{u}{3} + C \cr & {\text{simplifying}} \cr & \frac{1}{4}\int {\frac{1}{{9 + {u^2}}}du} = \frac{1}{{12}}{\tan ^{ - 1}}\frac{u}{3} + C \cr & {\text{write in terms of }}x{\text{; use }}\sin 4x{\text{ for }}u \cr & = \frac{1}{{12}}{\tan ^{ - 1}}\frac{{\sin 4x}}{3} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.