Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.6 Using Computer Algebra Systems And Tables Of Integrals - Exercises Set 7.6 - Page 531: 35

Answer

$$ - \frac{1}{4}{e^{ - 2x}}\left( {2x + 1} \right) + C$$

Work Step by Step

$$\eqalign{ & \int {x{e^{ - 2x}}} dx,\,\,\,\,u = - 2x \cr & {\text{Using the given substitution}} \cr & u = - 2x,\,\,\,\,\,\,\,du = - 2dx,\,\,\,\,\,dx = - \frac{{du}}{2}\, \cr & {\text{write in terms of }}u \cr & \int {x{e^{ - 2x}}} dx = - \frac{1}{2}\int {\left( { - 2x} \right){e^{ - 2x}}} dx = \frac{{ - 1}}{2}\int {\left( { - 2x} \right){e^{ - 2x}}} \left( { - \frac{{du}}{2}\,} \right) \cr & = \frac{1}{4}\int {u{e^u}} du \cr & {\text{Use the Endpaper Integral Table to evaluate the integral}} \cr & {\text{By formula 51}} \cr & \left( {51} \right):\,\,\,\,\,\,\int {u{e^u}du} = {e^u}\left( {u - 1} \right) + C \cr & \frac{1}{4}\int {u{e^u}} du = \frac{1}{4}{e^u}\left( {u - 1} \right) + C \cr & {\text{write in terms of }}x{\text{, and replace }} - 2x{\text{ for }}u \cr & = \frac{1}{4}{e^{ - 2x}}\left( { - 2x - 1} \right) + C \cr & = - \frac{1}{4}{e^{ - 2x}}\left( {2x + 1} \right) + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.