Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.6 Using Computer Algebra Systems And Tables Of Integrals - Exercises Set 7.6 - Page 531: 26

Answer

$$ - \frac{1}{6}\ln \left| {\frac{{\cos 2x}}{{3 - \cos 2x}}} \right| + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{{\sin 2x}}{{\left( {\cos 2x} \right)\left( {3 - \cos 2x} \right)}}dx} ,\,\,\,\,u = \cos 2x \cr & {\text{Using the given substitution}} \cr & u = \cos 2x,\,\,\,\,\,\,\,du = - 2\sin 2xdx,\,\,\,\,\,\,dx = \frac{{du}}{{ - 2\sin 2x}} \cr & {\text{write in terms of }}u \cr & \int {\frac{{\sin 2x}}{{\left( {\cos 2x} \right)\left( {3 - \cos 2x} \right)}}dx} = \int {\frac{{\sin 2x}}{{u\left( {3 - u} \right)}}\left( {\frac{{du}}{{ - 2\sin 2x}}} \right)} \cr & = \int {\frac{1}{{u\left( {3 - u} \right)}}\left( {\frac{{du}}{{ - 2}}} \right)} \cr & = - \frac{1}{2}\int {\frac{u}{{u\left( {3 - u} \right)}}du} \cr & {\text{Use the Endpaper Integral Table to evaluate the integral}} \cr & {\text{By formula 65}} \cr & \left( {65} \right):\,\,\,\,\,\,\int {\frac{{du}}{{u\left( {a + bu} \right)}} = \frac{1}{a}\ln \left| {\frac{u}{{a + bu}}} \right| + C} \cr & {\text{take }}a = 3,\,\,\,b = - 1{\text{ }} \cr & - \frac{1}{2}\int {\frac{u}{{u\left( {3 - u} \right)}}du} = - \frac{1}{{2\left( 3 \right)}}\ln \left| {\frac{u}{{3 - u}}} \right| + C \cr & {\text{simplifying}} \cr & - \frac{1}{2}\int {\frac{u}{{u\left( {3 - u} \right)}}du} = - \frac{1}{6}\ln \left| {\frac{u}{{3 - u}}} \right| + C \cr & {\text{write in terms of }}x{\text{ replace }}\cos 2x{\text{ for }}u \cr & = - \frac{1}{6}\ln \left| {\frac{{\cos 2x}}{{3 - \cos 2x}}} \right| + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.